PHOTOTHERMAL DEGRADATION STUDIES

JET PROPULSION LABORATORY

Ranty H. Liang

Accelerated Testing Development

- OBJECTIVE
 - DEVELOP VALID ACCELERATED TESTING METHODOLOGY IN ORDER
 10 EVALUATE MATERIALS FOR 30 YEARS LIFE
- APPROACH
 - IDENTIFY FAILURE MODES
 - DETERMINE ACCELERATED TEST CRITERIA
 - DEVELOP ACCELERATED TESTING METHODOLOGY

Compression Testing of Tedlar/EVA/S.S. Module

Control Sample (Between Cell)

Sample B (Between Cell)

RELIABILITY PHYSICS

Compression Testing of Tedlar/EVA/S.S. Module

	SAMPLE	DEFLECTION POINT (mil)	MODULUS (psi)
OVER CELL	А	4. 4	9, 000
	В	3.8	8, 000
	С	9.7	5, 200
BETWEEN CELL	Α	9.0	4, 700
	В	7.7	3, 800
	С	> 12	2, 900

A - OUTDOOR, REAL TIME, 500 DAYS, 75°C

B = ACCELERATED, 6.5 DAYS, 85°C, 8 SUNS

C = ACCELERATED, 6.5 DAYS, 98°C, 5.5 SUNS

Simulation and Modeling of Photothermal Degradation of Tedlar (Conclusion)

- TWO OR MORE DEGRADATION PATHWAYS EXIT
- THEY HAVE SUBSTANTIALLY DIFFERENT Eact, SO THAT
 - RATE k_1 PREDOMINATES AT TEMP $\leq 85^{\circ}$ C
 - RATE k_2 PREDOMINATES AT TEMP > 90° C
- DAMAGE IS CHIEFLY UV DRIVEN
- TEDLAR IS THE MATERIAL UNDERGOING DEGRADATION
- QUAL TEST TEMPERATURE SHOULD BE ≤ 85°C

Mechanistic Studies of Photothermal Degradation

- OBJECTIVES
 - TO STUDY MECHANISTIC PATHWAYS OF PHOTOTHERMAL DEGRADATION
 - TO DETERMINE PHOTOTHERMAL REACTION RATES FOR MOLECULAR KINETIC MODELING
- APPROACH
 - LASER-FLASH ESR SPECTROSCOPY TO DETERMINE KEY REACTION INTERMEDIATES AND THEIR KINETICS

Mechanism of Photooxidation

PRELIMINARY RESULTS

$$k_1 = 10^{-2}$$
 liter/mole sec
 $k_2 = 1.3 \times 10^{-2}/\text{sec}$
 $k_3 = 10^{-1}/\text{sec}$

Flash ESR Apparatus

Time Resolved ESR Spectra of Photogenerated Polymeric Radicals

RELIABILITY PHYSICS

Photothermal Mechanistic Studies (Conclusion)

- KEY TRANS IENT RADICALS RESPONS IBLE FOR PHOTOTHERMAL

 DEGRADATION IDENTIFIED AND CHARACTERIZED
- ALL IMPORTANT RATE CONSTANTS FOR TEMPERATURE AND O₂ LEVEL
- PHOTO-OXIDATION DEGRADATION MODEL DEVELOPED